1. Find the sum of the multiples of 3 between 100 and 500

First multiple of 3 over 100 is 102
and greatest multiple of 3 less than 500 is 498

Need to find # of terms \(n \) for sequence 102, 105, 108, ..., 498

\[a_n = a_1 + (n-1)d \quad \Rightarrow \quad 498 = 102 + 3(n-1) \quad \Rightarrow \quad 3n = 399 \]

\[n = 133 \]

\[
S_n = \frac{n}{2}(a_1 + a_n) \quad \Rightarrow \quad S_{133} = \frac{133}{2}(102 + 498)
\]

\[
S_{133} = 39,900
\]

2. A sample of radioactive material loses 8% of its mass every month. At this time, the sample contains 800 grams.

(a) Write a function \(A(m) \) that expresses the amount, \(A \), of grams of the sample in terms of the number of months, \(m \), from now.

(b) How many grams of the sample remain 2 years from now?

(a) \[A(m) = 800 \cdot (0.92)^m \]

(b) \[A(24) = 800 \cdot (0.92)^{24} \approx 108.143 \]

approximately 108 grams in 2 years
3. Represent each of the following series using sigma notation.

(a) \(-13 - 5 + 3 + \ldots + 83\)

(b) \(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12}\)

(a) Find # of terms
\[83 = -13 + (n-1)8 \Rightarrow 8n = 104 \Rightarrow n = 13\]
and find expression for \(n\)th term: \(a_n = -13 + (n-1)8 = 8n - 21\)

\[-13 - 5 + 3 + \ldots + 83 = \sum_{n=1}^{13} (8n - 21)\]

(b) Series is neither arithmetic nor geometric; 6 terms
General expression for \(n\)th term: \(\frac{1}{2n}\)

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12} = \sum_{n=1}^{6} \frac{1}{2n}\]

4. If the coefficient of the \(x^2\) term in the binomial expansion of \((a + 5x)^5\) is 2000, then what is the value of \(a\)?

Expression for general term: \(\binom{5}{r} a^{5-r} (5x)^r\)

For \(x^2\) term, \(r = 2\)

Thus, coefficient of \(x^2\) term is \(\binom{5}{2} a^{3} 5^2 = 2000\)

\[10 \cdot a^3 \cdot 25 = 2000\]

\[a^3 = 8\]

\[a = 2\]
5. The first four terms of an arithmetic sequence are \(a - b, 2a + b + 7 \) and \(a - 3b \), where \(a \) and \(b \) are constants. Find \(a \) and \(b \).

\[
\begin{align*}
\ a - b - 2 & = 2a + b + 7 - (a - b) \\
\ a - b - 2 & = a + 2b + 7 \quad \Rightarrow \quad 3b = -9 \quad \Rightarrow \quad b = -3 \\
\ a - b - 2 & = a - 3b - (2a + b + 7) \\
\ a - b - 2 & = -a - 4b - 7 \quad \Rightarrow \quad 2a + 3b = -5 \\
& \quad \Rightarrow \quad 2a + 3(-3) = -5 \quad \Rightarrow \quad 2a = 4 \\
& \quad \Rightarrow \quad a = 2
\end{align*}
\]

\[a = 2, \ b = -3 \]

6. A geometric series has a negative common ratio. The sum of the first two terms is 6, and the sum to infinity is 8. Find the common ratio and the first two terms.

\[
\begin{align*}
\text{sum of first two terms:} & \quad a_1 + a_1r = 6 \quad \Rightarrow \quad a_1(1 + r) = 6 \\
S_\infty & = \frac{a_1}{1 - r} = 8 \quad \Rightarrow \quad a_1 = \frac{6}{1 + r} \\
\frac{6}{1 + r} & = 8 \quad \Rightarrow \quad \frac{6}{1 + r} \cdot \frac{1}{1 - r} = 8 \quad \Rightarrow \quad \frac{6}{1 - r^2} = 8 \\
1 - r^2 & = \frac{6}{8} = \frac{3}{4} \quad \Rightarrow \quad r^2 = 1 - \frac{3}{4} \quad \Rightarrow \quad r^2 = \frac{1}{4} \quad \Rightarrow \quad r = \pm \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
a_1 & = \frac{6}{1 + r} = \frac{6}{1 - \frac{1}{2}} = \frac{6}{\frac{1}{2}} = 12 \\
a_2 & = 12 \cdot \left(-\frac{1}{2}\right) = -6 \quad \Rightarrow \quad r = -\frac{1}{2}
\end{align*}
\]

\[r = -\frac{1}{2}, \ a_1 = 12, \ a_2 = -6 \]
7. Find the term independent of \(x\) in the expansion of \(\left(\frac{1}{x^3} - 2x\right)^6\). The expression for the general term is:
\[
\binom{6}{r} \left(x^{-2}\right)^{6-r} (-2x)^r
\]
Looking at exponents only:
\[-12 + 2r + r = 0\]
\[3r = 12 \implies r = 4\]

\[r = 4 : \quad \binom{6}{4} \left(x^{-2}\right)^2 (-2x)^4 = 15 \cdot 16 x^4 = 240\]

8. The first three terms of an arithmetic sequence have a sum of 24. The first, second and sixth terms of this arithmetic sequence are also consecutive terms of a geometric sequence. Find the first six terms of the arithmetic sequence.

Arithmetic sequence

First 3 terms: \(a_1, a_1 + d, a_1 + 2d\)

Sum is 24:
\[a_1 + (a_1 + d) + (a_1 + 2d) = 24 \implies 3a_1 + 3d = 24\]

6th term of arithmetic seq. is \(a_1 + 5d\)

Geometric sequence, consecutive terms: \(a_1, a_1 + d, a_1 + 5d\)

\[r = \frac{a_1 + d}{a_1} = \frac{a_1 + 5d}{a_1 + d} \implies (a_1 + d)^2 = a_1 (a_1 + 5d)\]

\[a_1^2 + 2a_1d + d^2 = a_1^2 + 5a_1d \implies 3a_1d - d^2 = 0 \implies d \left(3a_1 - d\right) = 0\]

\[d = 0 \text{ or } d = 3a_1\]

\[a_1 + d = 8 \implies a_1 + 3a_1 = 8 \implies a_1 = 2\]

First 6 terms of arithmetic seq.: \(2, 8, 14, 20, 26, 32\)
9. Find \(n \) if the coefficient of \(x^2 \) in the expansion of \((1 + 2x)^n\) is 112.

Expression for general term: \(\binom{n}{r} (1)^{n-r} (2x)^r \)

\[X^2 \text{ term} \rightarrow r = 2 \]

Coefficient: \(\binom{n}{2} (2)^2 = 112 \)

\[\frac{n!}{2!(n-2)!} \cdot 4 = 112 \Rightarrow \frac{n!}{(n-2)!} = 56 \]

\[\frac{n(n-1)(n-2)(n-3)\ldots}{(n-2)(n-3)(n-4)\ldots} = 56 \Rightarrow n^2 - n - 56 = 0 \]

\[(n-8)(n+7) = 0 \]

\(n = 8 \) or \(n = -7 \)

Bonus

For what values of \(x \) does the infinite series \(1 + \frac{1}{x+1} + \frac{1}{(x+1)^2} + \cdots \) have a sum?

Geometric series such that \(r = \frac{1}{x+1} \)

Infinite sum exists if \(-1 < r < 1\)

Solve \(-1 < \frac{1}{x+1} < 1\)

\[-1 < \frac{1}{x+1} \]

\[\frac{1}{x+1} > -1 \Rightarrow X < -2 \text{ or } X > -1 \]

\[\frac{1}{x+1} < 1 \Rightarrow X < - \text{ or } X > 0 \]

Solution is intersection of these

\[X < -2 \text{ or } X > 0 \]