transformations of graphs - 1

4 questions – progressing from ‘accessible’ to ‘discriminating’

1. (a) Given that the function \(h \) is defined as \(h(x) = x^2 \). [no calculator]
 show that \(g(x) = h(x-2) + 1 = x^2 - 4x + 5 \).
 (b) Describe fully the transformations which map \(h(x) \) onto \(g(x) \).

2. The function \(f \) is defined as \(f(x) = \sqrt{4-x} \). Sketch the graph of each function
 given below – each on a separate pair of axes. [no calculator]
 (a) \(y = f(2x) \)
 (b) \(y = f(-x) \)
 (c) \(y = \frac{1}{2} f(x) + 2 \)

3. The graphs of functions \(f(x) \) and \(g(x) \) are shown below. [no calculator]

 (a) Describe fully the transformations which map the graph of \(f(x) \) onto the
 graph of \(g(x) \).
 (b) Express \(g(x) \) in terms of \(f(x) \).

4. Given \(k > 0 \), what value(s) of \(x \) satisfy the equation \(|x+k| = |x| + k \).
 [no calculator]
transformations of graphs - 1

Answers

1. (b) horizontal translation 2 units to the right, and vertical translation 1 unit up

2. (a) \[y = f(2x) \]
(b) \[y = f(-x) \]
(c) \[y = \frac{1}{2} f(x) + 2 \]

3. (a) reflection about the x-axis, followed by a horizontal shrink of factor \(\frac{1}{4} \), followed by a vertical shrink of factor \(\frac{1}{4} \), followed by a vertical translation 1 unit down.
(b) \[g(x) = -\frac{1}{4} f\left(\frac{x}{4}\right) - 1 \]

4. \(x \geq 0 \)