You need to log-in or subscribe in order to use Student access.

P.o.t.W. #9 Solution

SOLUTIONgradient of line, \(m = \frac{{a{c^2} - a{b^2}}}{{c - b}} = \frac{{a\left( {c + b} \right)\left( {c - b} \right)}}{{c - b}} = ac + ab\)equation of line: \(y - a{b^2} = \left( {ac + ab} \right)\left( {x - b} \right)\)\(y = \left( {ac + ab} \right)x - abc - a{b^2} + a{b^2}\)\(y = \left( {ac + ab} \right)x - abc\)area of bounded region \( = \int_b^c {\left\{ {\left[ {\left( {ac + ab} \right)x - abc} \right] - a{x^2}} \right\}} \,dx\)\( = \int_b^c {\left\{ { - a{x^2} + \left( {ac + ab} \right)x - abc} \right\}dx} \)\( = \left. { - \frac{1}{3}a{x^3} + \frac{1}{2}\left( {ac + ab} \right){x^2} - abcx} \right]_b^c\)\( = \left[ { - \frac{1}{3}a{c^3} + \frac{1}{2}\left( {ac + ab} \right){c^2} - ab{c^2}} \right] - \left[ { - \frac{1}{3}a{b^3} + \frac{1}{2}\left( {ac + ab} \right){b^2} - a{b^2}c} \right]\)\( = - \frac{1}{3}a{c^3} + \frac{1}{2}a{c^3} + \frac{1}{2}ab{c^2} - ab{c^2} + \frac{1}{3}a{b^3} - \frac{1}{2}a{b^3} - \frac{1}{2}a{b^2}c + a{b^2}c\)\( = \frac{1}{6}a{c^3} - \frac{1}{6}a{b^3} - \frac{1}{2}ab{c^2} + \frac{1}{2}a{b^2}c\)\( = \frac{a}{6}\left( {{c^3} - {b^3}} \right) - \frac{{abc}}{2}\left( {c - b} \right)\)\( = \frac{a}{6}\left( {c - b} \right)\left( {{c^2} + bc + {b^2}} \right) - \frac{{abc}}{2}\left( {c - b} \right)\)\( = \frac{a}{6}\left( {c - b} \right)\left[ {\left( {{c^2} + bc + {b^2}} \right) - 3bc} \right]\)\( = \frac{a}{6}\left( {c - b} \right)\left( {{c^2} - 2bc + {b^2}} \right)\)\( = \frac{a}{6}\left( {c - b} \right){\left( {c - b} \right)^2}\;\;\; \Rightarrow \;\;\;\)thus, area of bounded region \( = \frac{a}{6}{\left( {c - b} \right)^3}\) Q.E.D.Comment: For a given value of a, the area of the parabolic segment is determined by the value of \(c - b\). If the horizontal distance between the points of intersection is constant then...

To access the entire contents of this site, you need to log in or subscribe to it.

Alternatively, you can request a one month free trial.