### Recent postsView all

 Problem: find exact ratio of are…1 Sep 19 Probability - Complement Approac…1 Jun 19 Worked Solutions - HL Paper 1 Ex…21 May 19 Euler's method on the TI-Ns…17 Mar 19 what is path of midpoint of a fa…24 Nov 18 Effective GDC Use #317 Nov 18 P.o.t.D.- 301 problems30 Sep 18 Effective GDC Use #219 Sep 18 Effective GDC Use #111 Sep 18 P.o.t.D.- 250 Problems6 May 18 Some fun with primes ... and Geo…18 Jan 18 primitive Pythagorean triples30 Dec 17

# volume of a donut

Wednesday 19 November 2014

One of my students came up with - what I thought - is a good idea for an Exploration: finding the volume of a donut. Or, more precisely, deriving a general formula for the volume of a torus. The torus (donut) can be interpreted as a solid of revolution where the solid is created by revolving a circle of radius r around a line such that the center of the circle is a distance R from the line (axis of revolution).

Here is an image of a torus graphed in 3D parametric mode on a TI-Nspire CX (using the software rather than the handheld device).